A Sequential Quadratic Programming Algorithm with an Additional Equality Constrained Phase
نویسندگان
چکیده
A sequential quadratic programming (SQP) method is presented that aims to overcome some of the drawbacks of contemporary SQP methods. It avoids the difficulties associated with indefinite quadratic programming subproblems by defining this subproblem to be always convex. The novel feature of the approach is the addition of an equality constrained phase that promotes fast convergence and improves performance in the presence of ill conditioning. This equality constrained phase uses exact second order information and can be implemented using either a direct solve or an iterative method. The paper studies the global and local convergence properties of the new algorithm and presents a set of numerical experiments to illustrate its practical performance.
منابع مشابه
A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملSequential equality-constrained optimization for nonlinear programming
A new method is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of Sequential Quadratic Programming and Sequential Linearly-Constrained Programming, the new method approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an Augmented Lag...
متن کاملA Superlinearly feasible SQP algorithm for Constrained Optimization
This paper is concerned with a Superlinearly feasible SQP algorithm algorithm for general constrained optimization. As compared with the existing SQP methods, it is necessary to solve equality constrained quadratic programming sub-problems at each iteration, which shows that the computational effort of the proposed algorithm is reduced further. Furthermore, under some mild assumptions, the algo...
متن کاملMultiplier - Continuation Algorithms for Constrained Optimization
Several path following algorithms based on the combination of three smooth penalty functions, the quadratic penalty for equality constraints and the quadratic loss and log barrier for inequality constraints, their modern counterparts, augmented Lagrangian or multiplier methods, sequential quadratic programming, and predictorcorrector continuation are described. In the first phase of this method...
متن کاملA Merit Function for Inequality Constrained Nonlinear Programming Problems
We consider the use of the sequential quadratic programming (SQP) technique for solving the inequality constrained minimization problem min x f(x) subject to: g i (x) 0; i = 1; : : :; m: SQP methods require the use of an auxiliary function, called a merit function or line-search function, for assessing the steps that are generated. We derive a merit function by adding slack variables to create ...
متن کامل